Byte-VAE: A Lightweight Alternative to VQ-VAE
Zeyuan (Faradawn) Yang
David A. McAllester
01 - Introduction

VQ-VAE is based on the idea that an image can be tokenized into discrete words. For example,
the sky can be described using a token “9” and the person using token “2”.

BEREK
HAK!
NINK

However, VQ-VAE faces a number of challenges. 1) it finds a closest neighbor for each latent
vector, which incurs a time complexity of O(n*2) and does not scale if the latent dimension
increases. 2) It is hard to balance the update rate between the latent vectors and the codebook
vectors, demanding a hyperparameters search on “beta”.

L = log p(z]24(2)) + lIsg[2e ()] — ell3 + Bllze(x) — sgle]ll5.

We propose Byte-VAE, a novel quantization method that rounds a floating point to an integer in
[0, 255] — a “byte” — in contrast to VQ’s finding of nearest neighbors. This method avoids
learning a bulky codebook while achieving a near-identical performance.

Byte-VAE offers two advantages:

1. Fast and Memory Efficient: rounding to the nearest integer is a O(1) operation
compared to the nearest neighbor search, reducing time complexity. Also, it improves
memory efficiency by removing the large codebook in cache.

2. Simplified Training: The codebook in VQ-VAE requires learning, which adds two
additional loss terms: “commitment loss” and “nearest neighbor loss”. However, Byte-
VAE removes the codebook learning and only uses a reconstruction loss.

02 - Method

Byte-VAE uses the same bottleneck framework as VQ-VAE with the center part modified: a
simple rounding process instead of a codebook search:

trmight thraugh
‘e

yechr | tleans
@_; linev 77 M 27 I, S5 15
l

= Byte- VAL 4

Starting from the left, we begin with a CNN encoder. Then, we add a linear layer (1D
convolution) to squeeze the latent image’s each latent vector to a single number, “a token”.

Next, we convert the number “x” into the rage of [0, 255] using the formula below:
(i mm) x 255
range

Then, round the result to the nearest integer. Now, each pixel becomes a “byte token” that
represents the meaning of that segment. In this way, we constrain our vocabulary size (number
of unique tokens) to 256. Finally, we pass the tokens to a linear layer (1D transpose
convolution) and decoder to reconstruct the image.

As mentioned previously, the loss function is simplified to reconstruction loss only
L =logp(x|z,(x))

where z_q(x) is the final reconstructed image.

However, since the rounding operation is non-differentiable, we use a “straight-through” method
to pass the gradients for tokens directly to the floating point vector. This is based on the same
assumption as VQ-VAE that the tokens are close enough to the values before rounding.
Although the dynamic range of floating points is high, the squeezing operation (x - min / range)
is reversible, so the gradient update will be magnified or shinked accordingly.

03 - Experiments

We compare our performance against VQ-VAE on the CIFAR-10 dataset (32x32x8). 1) The
CNN encoder/decoder has latent dimension of 256 and space reduction of 4 times. 2) The linear
layer (1D convolution) compresses a (8x8x256) latent image to (8x8x1). 3) The number of
tokens is 256 for both VQ-VAE and Byte-VAE. 4) We use ADAM optimiser, a learning rate of
2e-4, a batch size of 128, and 20 epochs.

Result 1: Reconstruction Quality

Original fixed Images

We observe that Byte-VAE produces almost identical results to that of VQ-VAE in terms of
structural coherence. Additionally, Byte-VAE displays a more consistent color scheme (less
variance), likely due to the compression of the latent image’s 256-dimension vector into a single
number.

Result 2: Convergence

Byte-VAE achieves a near-identical loss (explained below) with VQ-VAE. In addition, the two
show an identical convergence pattern.

Training Loss Comparison Test Loss Comparison

—— Train Loss vqvae 8 —— Test Loss vqvae_8
035 Train Loss bytevae 8 035 Test Loss bytevae_8

010 010

\

0.05 1 b oo

0.00
0 1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 7000 8000
step step

The complete likelihood used in the VQ-VAE paper is

log p(z) ~ log p(z|z4(x))p(24(x))
Since the same prior (pixelCNN) is used for both VQ and Byte VAE, we cancel the prior term for
simplicity

logp(z) = logp(z | z4(x))

Then, we take the negative of the log likelihood as our loss.

04 - Conclusion

We propose Byte-VAE, a novel quantization method that rounds each latent vector into a “byte
token”. It 1) removes the nearest-neighbor searching, 2) simplifies the loss function, 3) reduces
the number of parameters by removing the codebook. Yet, it achieves a near-identical
performance as VQ-VAE for all values of token size: k = [512, 256, 32, 8] (appendix). In the
future, we plan to create a hierarchy of byte-quantization, i.e., quantizing at every resolution
during encoding.

Acknowledgement: special thanks to David A. McAllester for the Byte-VAE idea and Jose
Marcelo Sandoval-Castaneda for the straight-through gradient.

05 - Appendix

We test different vocabulary sizes (number of tokens) using k = [512, 256, 32, 8]. We observe
that the smaller the vocabulary size, the better performance of Byte-VAE. Therefore, in a
memory constrained environment, Byte-VAE is likely to shine.

‘Training Loss Comparison

Test Loss Comparison

Training Loss Comparison

Test Loss Comparison

E § K 3
01 o1 ~ 010 0101
" } | e - .
o
Training Loss Comparison Test Loss Comparison Training Loss Comparison Test Loss Comparison
% F 4 020 4 020
S 0z0 o020 3 5

2000
step

step

