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01 - Introduction

VQ-VAE is based on the idea that an image can be tokenized into discrete words. For example, 
the sky can be described using a token “9” and the person using token “2”.

However, VQ-VAE faces a number of challenges. 1) it finds a closest neighbor for each latent 
vector, which incurs a time complexity of O(n^2) and does not scale if the latent dimension 
increases. 2) It is hard to balance the update rate between the latent vectors and the codebook 
vectors, demanding a hyperparameters search on “beta”.

We propose Byte-VAE, a novel quantization method that rounds a floating point to an integer in 
[0, 255] – a “byte” – in contrast to VQ’s finding of nearest neighbors. This method avoids 
learning a bulky codebook while achieving a near-identical performance.

Byte-VAE offers two advantages:
1. Fast and Memory Efficient: rounding to the nearest integer is a O(1) operation 

compared to the nearest neighbor search, reducing time  complexity. Also, it improves 
memory efficiency by removing the large codebook in cache.

2. Simplified Training: The codebook in VQ-VAE requires learning, which adds two 
additional loss terms: “commitment loss” and “nearest neighbor loss”. However, Byte-
VAE removes the codebook learning and only uses a reconstruction loss.

02 - Method



Byte-VAE uses the same bottleneck framework as VQ-VAE with the center part modified: a 
simple rounding process instead of a codebook search:

Starting from the left, we begin with a CNN encoder. Then, we add a linear layer (1D 
convolution) to squeeze the latent image’s each latent vector to a single number, “a token”. 
Next, we convert the number “x” into the rage of [0, 255] using the formula below:

Then, round the result to the nearest integer. Now, each pixel becomes a “byte token” that 
represents the meaning of that segment. In this way, we constrain our vocabulary size (number 
of unique tokens) to 256. Finally, we pass the tokens to a linear layer (1D transpose 
convolution) and decoder to reconstruct the image.

As mentioned previously, the loss function is simplified to reconstruction loss only 

where z_q(x) is the final reconstructed image. 

However, since the rounding operation is non-differentiable, we use a “straight-through” method 
to pass the gradients for tokens directly to the floating point vector. This is based on the same 
assumption as VQ-VAE that the tokens are close enough to the values before rounding. 
Although the dynamic range of floating points is high, the squeezing operation (x - min / range) 
is reversible, so the gradient update will be magnified or shinked accordingly.

03 - Experiments



We compare our performance against VQ-VAE on the CIFAR-10 dataset (32x32x8). 1) The 
CNN encoder/decoder has latent dimension of 256 and space reduction of 4 times. 2) The linear 
layer  (1D convolution) compresses a (8x8x256) latent image to (8x8x1). 3) The number of 
tokens is 256 for both VQ-VAE and Byte-VAE. 4) We use ADAM optimiser, a learning rate of 
2e-4, a batch size of 128, and 20 epochs. 

Result 1: Reconstruction Quality 
Original fixed Images

VQ VAE

Byte VAE

We observe that Byte-VAE produces almost identical results to that of VQ-VAE in terms of 
structural coherence. Additionally, Byte-VAE displays a more consistent color scheme (less 
variance), likely due to the compression of the latent image’s 256-dimension vector into a single 
number.

Result 2: Convergence



Byte-VAE achieves a near-identical loss (explained below) with VQ-VAE. In addition, the two 
show an identical convergence pattern. 

The complete likelihood used in the VQ-VAE paper is 

Since the same prior (pixelCNN) is used for both VQ and Byte VAE, we cancel the prior term for 
simplicity

Then, we take the negative of the log likelihood as our loss.

04 - Conclusion

We propose Byte-VAE, a novel quantization method that rounds each latent vector into a “byte 
token”. It 1) removes the nearest-neighbor searching, 2) simplifies the loss function, 3) reduces 
the number of parameters by removing the codebook. Yet, it achieves a near-identical 
performance as VQ-VAE for all values of token size: k = [512, 256, 32, 8] (appendix). In the 
future, we plan to create a hierarchy of byte-quantization, i.e., quantizing at every resolution 
during encoding.

Acknowledgement: special thanks to David A. McAllester for the Byte-VAE idea and Jose 
Marcelo Sandoval-Castañeda for the straight-through gradient.

05 - Appendix 



We test different vocabulary sizes (number of tokens) using k = [512, 256, 32, 8]. We observe 
that the smaller the vocabulary size, the better performance of Byte-VAE. Therefore, in a 
memory constrained environment, Byte-VAE is likely to shine.


