
Leveraging AI for Faster Storage Access: a Graph-Neural-Network-Based
Prefetcher

Zeyuan Yang
University of Chicago

Chicago, IL, USA
faradawny@gmail.com

Daniar H. Kurniawan
University of Chicago

Chicago, IL, USA
daniar@uchicago.edu

Haryadi S. Gunawi
University of Chicago

Chicago, IL, USA
haryadi@cs.uchicago.edu

Abstract

Despite the widespread adoption of SSDs in cloud environ-
ments, I/O access (disk reads and writes) remains a significant
performance bottleneck. To mitigate access latency, various
prefetching techniques have been developed. However, as
servers increasingly host multi-user workloads, the efficacy
of traditional prefetchers diminishes. Fortunately, with the
ascendance of artificial intelligence, there is an escalating
interest in utilizing machine learning methods to predict ac-
cess patterns more accurately. Nonetheless, these methods
face challenges: large model sizes, high inference latency,
and unstable hit rates. In this paper, we introduce “Spectral
Prefetcher”, a spectral graph neural network for rapid and
precise predictions. This approach 1) achieves 21.8% im-
provement of hit rate over the baseline, 2) reduces training
and inference latency by 79.9% over the state-of-the-art GNN
prefetcher [10], 3) decreases memory usage by 33.3%.

CCS CONCEPTS

• Information systems → Information storage systems • Com-
puter systems organization → Neural networks • Computer
systems organization → Real-time system architecture • Com-
puting methodologies → Machine learning approaches • In-
formation systems → Data management systems • Hardware
→ Secondary storage

KEYWORDS

Storage systems; Caching systems; Graph Neural Network;
Performance

1 Introduction

In the era of cloud computing, I/O (input/output) operations
remain a significant performance bottleneck [6]. When users
request data from a server, the server must retrieve it from the

disk, a process that is notably slow. To address this, storage-
level caches were developed to store data likely to be accessed
in the future. However, data is only loaded into the cache upon
a miss, resulting in a delay during the first access. Prefetching
was introduced to pre-load data into the cache, yet it faces
challenges: 1) non-sequential access patterns are hard to de-
tect, 2) workloads have become increasingly complex and
irregular, 3) prefetching latency cannot be high.

01 - Non-sequential pattern detection. Traditional prefetch-
ers, often based on heuristic algorithms, struggle with non-
sequential pattern detection [7]. For instance, the prefetcher
in the Linux kernel uses the last two cache misses to predict
the next access [8]. However, this method falters in com-
plex, multi-user environments with interleaved I/O streams,
suggesting the potential of spatial feature analysis for pattern
mining. Our graph-based prefetcher leverages this approach
to identify spatial patterns in access history.

02 - A learning-based approach. As workloads grow more
complex, machine learning-based methods have emerged as
superior solutions for adapting to any access pattern without
preconceived assumptions. They can learn an access pattern
from any workload without prior assumption to the trace.
Thus, we employ a neural network to conduct prediction.

03 - Achieving fast inference. Existing ML-based algo-
rithms, such as DeepPrefetcher [3], LSTM [1], and SGDP
[10], suffer from high training and inference latency due to
their complex architecture and data processing. We seek to
create a lightweight model that can achieve similar perfor-
mance.

Our pipeline is depicted in Figure 1. It begins by trans-
forming a sequence of raw addresses into deltas (offsets from
previous addresses). We maintain a sliding window, e.g., of
length 32, of these address deltas. From there, we construct a
directed graph with vertices representing address deltas and
edges representing transitions. This graph is then processed
by a spectral graph neural network (SpectralGNN), outputting
a node class that represents an address delta. Using this delta,
we calculate the real address to prefetch. Benchmarking on
extensive production server workloads from Microsoft [9],

Figure 1: Spectral prefetcher takes in a stream of address and convert them to deltas (offsets from previous ones). Then, it builds
a directed graph and pass it to a graph convolution network, which will predict a next node.

Alibaba, and Tencent Technology demonstrates that our model
significantly reduces inference overhead while maintaining
state-of-the-art prediction accuracy. We summarize our con-
tributions as follows: To the best of our knowledge, Spectral
Prefetcher is the first cache prefetcher that utilizes a spectral
graph network for prediction. It avoids local irregularities
and mines a global pattern. It surpasses the baseline (stride
prefetcher) by 21.8It lowers inference latency by 79.9

2 Background

Problem Formulation. In today’s cloud environments, servers
are increasingly multi-tenant, handling interleaved requests
from numerous concurrent users and application streams.
Consequently, even if an individual application’s logical I/O
sequence results in physically sequential accesses, or if the
application’s pattern is highly predictable, these patterns can
be challenging to recognize at the storage system level. This
complexity is evident in scenarios such as concurrent execu-
tion of multiple applications on a shared network-attached
storage, as illustrated in Figure 1, and also in single applica-
tions with multiple threads that exhibit varied access patterns,
such as a database application running multiple queries, as
also depicted in [Figure 2].

Related work. The literature on prefetching techniques
can be categorized into two main groups. The first category
comprises sequential prefetchers, which analyze the entire
sequence as a single stream for prediction purposes. This
includes Stride Prefetcher, which we use as our baseline, and
LSTM. The second category involves graph-based prefetchers,
which maintain a global historical view, like a Markov chain’s
table, a probabilistic graph noting each address and recording

Figure 2: Interleaved Access Pattern of Modern Workloads

the most probable subsequent nodes. This category includes
Markov Chain and SGDP.

01 - Stride Prefetcher. It uses a historical table to store 128
LBA (Logical Block Address) streams. Each entry tracks the
last 3 LBAs of that stream. When a new request arrives, the
prefetcher hashes the most significant bits of the request’s
LBA and puts it to one of the 128 streams. If the difference
between the last 3 LBA accesses matches, it will detect a
stride and conduct a prediction [2].

02 - LSTM. It utilizes a long-term, short-term memory ML
model to predict the next LBA delta based on the last several
(e.g. 128) LBA delta. It treats the addresses as a sequence and
conducts a RNN-like prediction [1].

03 - Markov Chain Prefetcher. It uses a state transition
model to predict the next block to be accessed. The transi-

2

tion model is a table that, for each block (LBA), records the
probabilities of all the next potential blocks [5].

04 - SGDP. It builds a graph out of the last several (e.g.
128) LBA deltas, treating each delta as a node. Then it uses
a gated graph neural network to transform each delta into a
vector. Finally, it uses the vectors to predict the next LBA delta.
This is the state-of-the-art ML model in terms of prefetching
accuracy [10].

3 Methodology

Why graphs can offer a global view of a sequence. Modeling
the problem as a graph provides a comprehensive perspec-
tive on the data. Focusing only on the immediate one or two
past accesses, discerning a discernible pattern becomes chal-
lenging. However, by examining the historical stream of data,
distinct clusters of addresses or streams emerge. The graph-
based approach leverages these patterns by representing them
in a structure that highlights the relationships and interactions
between different data points, thus providing a clearer un-
derstanding of the underlying trends and behaviors. See the
figure below for an illustration [Figure 3].

Figure 3: Local view (left) doesn’t show a pattern versus the
global view (right) does

The initial insight. The initial approach involved maintain-
ing a historical table that recorded, for each address, which
other addresses it was connected to. Expanding upon this
concept, it’s akin to managing a linked list where, for each
node, the connected nodes are identified, and the edge weights
could represent the probabilities. This concept has inspired
the use of graphs to model the I/O stream in recent studies,
such as Probabilistic Graph [4] and SGDP [10].

How to construct a graph from a sequence. We employ a
sliding window of size 32, meaning the graph can contain
up to 32 vertices at any time. For example, if the access se-
quence moves from address 10 to address 31, a directed edge
from vertex 10 to vertex 31 is created. Should there be an-
other instance of transitioning from address 10 to address
31, the weight of the existing edge is incremented by one.
This method enables the modeling of I/O stream patterns in a
graph, providing insights into the frequency and likelihood
of specific transitions. Notably, we use address deltas rather
than raw addresses for graph construction, which facilitates

the creation of a higher-order representation that captures the
nuances of address sequences more effectively.

Figure 4: Building a graph from data stream

Why use address delta. Using address deltas instead of
raw addresses for constructing the graph offers significant
advantages in the context of prefetching. Firstly, a stream
may contain 32 unique addresses, but the number of unique
offsets (deltas) between these addresses is typically lower,
effectively reducing the graph’s complexity. This reduction
in vertices simplifies the graph, making it more manageable
for analysis and prediction. Furthermore, predicting absolute
addresses, which can range from 0 to 264 in a 64-bit address
space, creates an impractically large prediction space. By fo-
cusing on the most frequent 1000 deltas as prediction classes,
the approach narrows down the prediction space, making it
feasible for the model to generate accurate predictions.

How Spectral GNN Works. After constructing the graph
with a sliding window technique, the resulting adjacency ma-
trix is input into the neural network. Spectral Graph Neural
Networks (Spectral GNNs) operate on the principle of lever-
aging the spectral properties of graphs, which are derived
from the eigenvalues and eigenvectors of their adjacency or
Laplacian matrices. The output of a Spectral GNN, particu-
larly a two-layer Graph Convolutional Network (GCN), can
be generalized by an equation that integrates these spectral
properties to perform convolution operations in the spectral
domain. These operations effectively capture the topological
structure and node feature information within the graph, en-
abling the network to learn and make predictions based on the
complex patterns of I/O stream accesses represented within
the graph structure. See formula below.

H = σ2

(
Aσ1

(
AXW (0)

)
W (1)

)
.

where

• H: Output matrix of the node features after two layers.

• σ1 and σ2: Non-linear activation functions applied after
the first and second layers, respectively.

3

• A: Normalized adjacency matrix that includes self-loops
to incorporate node self-features.

• X : Input feature matrix where each row represents the
features of a node.

• W (0) and W (1): Weight matrices for the first and second
layers, respectively.

Graph Convolutional Networks (GCNs) leverage the spec-
tral properties of graphs to learn node representations that
encapsulate both structural and feature information of the
graph. Utilizing the adjacency matrix and its normalization,
GCNs perform convolution operations that are inherently
sensitive to the graph’s topology. Through the application
of successive layers, these networks aggregate information
from broader neighborhoods, enabling the capture of global
graph properties alongside local connections. This approach
enriches node representations, allowing GCNs to effectively
understand and predict complex relationships and patterns
within graph-based data, such as in I/O stream prediction
tasks.

4 Experimental Setup

Workload. Our dataset comprises traces from enterprise pro-
duction servers of four companies: Microsoft, Alibaba, Ten-
cent, and Seagate. Notably, the Microsoft dataset, collected
by Microsoft Research Cambridge, includes a one-week se-
quence of logical block addresses (LBAs) from live produc-
tion servers. These workloads accurately represent the multi-
tenant, multithreaded computing environments prevalent in
today’s cloud enterprises.

Model Architecture and Training. We developed our
Spectral Prefetcher using PyTorch, incorporating two graph
convolution layers followed by a ReLU activation and dropout
layer. The chosen architecture, with a hidden layer size of
150, represents the optimal minimal design for achieving high
prediction accuracy. Our training configuration includes a
batch size of 128, the Adam optimizer, and cross-entropy loss,
catering to our model’s classification of the most probable
next deltas out of a compressed prediction space of the 1000
most frequent deltas. This approach transforms the problem
into a classification task rather than regression, significantly
enhancing accuracy and efficiency by reducing the model’s
complexity.

Metrics - Hit rate - Improves item access speed (time to
run a workload, measured by number of misses * fetch SSD
time) - Effectiveness - Overhead (useless things read)

- Model size: Num of params - Model speed: inference
time

Graphs - Improves hit rate - Improves item access speed -
Improves effetiveness - Improves overhead

- Model size - Model speed

- High hit rate accross workload - High access speed across
workloads

TODO - Increase spine thickness
Metrics. We use the following metrics to evaluate our

Spectral Prefetcher against the baselines.

1. Hit rate is a performance metric that calculates the ratio
of cache hits to the total number of I/O requests. A higher
hit rate signifies a more effective prefetching strategy,
as it indicates a greater proportion of successful cache
accesses.

Hit rate =
hits

total I/O
.

2. Access speed measures how fast can a prefetcher finish
a workload. It is inversely proportional to the number
of cache misses. We assume that a cache miss to SSD
incurs 0.1 ms latency cost. The less cache misses, the
shorter the duration of a workload, the faster the speed.
In the experiment, we measure the workload duration –
the shorter the better.

Access speed =
total I/O

workload duration
.

3. Prefetch effectivenss assesses the effectiveness of
prefetched data by measuring the proportion of
prefetched blocks that are subsequently accessed (hits)
in later operations. Higher memory utilization reflects
better prediction accuracy and prefetching efficiency.

Prefetch utilization =
bytes hit

total bytes prefetched
.

4. Prefetch overhead is a measure of extra bandwidth con-
sumption in the prefetching process, quantified by the
amount of data read from HDD minus the amount re-
quested by users divided by amount requested by users.
High overhead indicates a high strain on the I/O band-
width and a high stress on the backend HDD.

Prefetch overhead =

total read from HDD - total requested data
total requested data

.

5. Inference latency refers to the time required for an ML
model to conduct a prediction. Usually, a more com-
plex model is slower in inference. Thus, we need to find
the suitable model architecture that sufficient predictive
power and fast inference speed.

Inference latency= time required to produce predictions.

6. Model size indicates the complexity and memory foot-
print of a machine learning model, quantified by the total
count of its parameters. A larger model size typically
means higher memory consumption.

Model size = number of parameters

4

(a) Spectral Prefetcher achieves high hit rate comparing to other baselines.
(b) Spectral Prefetcher reduces workload du-
ration.

Figure 5: Spectral Prefetcher achieves high hit rate and access speed comparing to other baselines.

(a) Spectral Prefetcher improves prefetch effectiveness. (b) Spectral Prefetcher maintains reasonable overhead.

Figure 6: Prefetch effectiveness and overhead.

5 Experimental Results

Here is text below the pictures.
01 Spectral Prefetcher improves hit rate by 21.8%. In

comparative analysis, the Spectral Prefetcher reached a hit rate
of 31.94%, surpassing the baseline stride prefetcher’s 10.1%.
Graph-based prefetchers, including the Spectral Prefetcher,
demonstrate superior performance over sequential ones, vali-
dating the effectiveness of graph-based algorithms in cache
prediction. This improvement is reflected across various com-
pany traces, with graph-based models achieving higher aver-
age hit rates. 5a

02 Spectral Prefetcher improves access speed. Spectral
prefetcher is able to reduce cache misses, thereby reducing
the time spent to execute a workload. In an HDD enviroment,
the cache miss latency is set to be 20ms. In a SSD enviroment,

the latency is 0.1ms. Thus, Spectral prefetcher will yield more
time saving if the latency of a cache miss is higher. 5b

03 Spectral Prefetcher improves prefetch effectiveness.
By improving prefetch utilization, the Spectral Prefetcher
outperforms other models, notably the stride prefetcher, which
suffers from fetching many incorrect blocks into the cache.
While LSTM and other graph-based approaches show similar
memory utilization levels, the Spectral Prefetcher stands out
as the top performer, indicating its precision in prefetching
relevant data. 6a

04 Spectral Prefetcher maintains reasonable overhead.
Despite generally higher overhead observed among graph-
based models, indicating a tendency to prefetch more items
into the cache, the Spectral Prefetcher maintains a reasonable
overhead. This is less of a concern with sufficient cache size
or when prefetching occurs in the background without com-

5

(a) Hit rate distribution

(b) Spectral Prefetcher reduces
the number of paramters compar-
ing to SGDP.

(c) Spectral Prefetcher reduces
inference latency comparing to
SGDP.

Figure 7: Comparing with memory and inference speed saving with the state-of-the-art GNN model.

(a) Spectral Prefetcher improves hit rate across all traces. (b) Spectral Prefetcher reduces access latency across all traces.

Figure 8: Hit rate and access time saving across difference traces.

peting for I/O bandwidth with ongoing requests. The Spectral
Prefetcher exhibits lower overhead compared to both SGDP
and the Markov Chain, underscoring its efficiency. 6b

05 Spectral Prefetcher saves inference time by 79.9%.
Compared to SGDP, the leading ML-based model, Spectral
Prefetcher significantly lowering both training and inference
durations. This substantial efficiency improvement under-
scores the Spectral Prefetcher’s viability for deployment in
high-performance cloud environments, where minimizing la-
tency is crucial. 7c

06 Spectral Prefetcher saves memory space by 33.3%.
Model size is crucial since the model must be loaded into
memory for inference. With a considerably smaller model size
measured by the number of parameters, Spectral Prefetcher’s
size (174,403 parameters) is significantly less than that of
the state-of-the-art SDDP (261,800 parameters), highlighting
its efficiency and suitability for memory-constrained environ-
ments. 7b

07 Spectral’s high hit rate across all traces. Across a
range of workloads, each with its own unique patterns, the
Spectral Prefetcher consistently achieves the highest hit rate,

as evidenced by the red line in our analyses. This consis-
tency in performance across diverse workloads highlights the
Spectral Prefetcher’s robustness and adaptability in various
environments. 8a

08 Spectral Prefetcher’s low latency across all traces.
The Spectral Prefetcher ensures low latency across all traces,
accommodating both lengthy and brief workloads effectively.
This is illustrated by the green line in our analysis, which
shows the Spectral Prefetcher’s ability to maintain signifi-
cantly lower latency across different types of workloads, fur-
ther demonstrating its potential for enhancing performance in
a wide range of cloud computing scenarios. 8b

6 Conclusion

In this paper, we introduced the Spectral Prefetcher, an in-
novative spectral graph-based model designed to accurately
predict future I/O accesses by users. The Spectral Prefetcher
has demonstrated superior performance, achieving state-of-
the-art results in hit rate, memory utilization, and overhead

6

management. Notably, it offers a substantial 79.9% reduction
in latency and a 33.3% decrease in model size. Its efficacy has
been validated across diverse workloads from major cloud
companies, including Microsoft and Alibaba. The Spectral
Prefetcher’s design makes it a practical solution for deploy-
ment in production storage servers, where it can deliver sig-
nificant memory savings and enhanced cache performance.

References
[1] CHAKRABORTTII, C., AND LITZ, H. Learning i/o access patterns to

improve prefetching in ssds. In ICML-PKDD (2020).

[2] FU, J. W., PATEL, J. H., AND JANSSENS, B. L. Stride directed
prefetching in scalar processors. ACM SIGMICRO Newsletter 23, 1-2
(1992), 102–110.

[3] GANFURE, G. O., WU, C.-F., CHANG, Y.-H., AND SHIH, W.-K.
Deep-prefetcher: A deep learning framework for data prefetching in
flash storage devices. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 39, 11 (2020), 3311–3322.

[4] GRIFFIOEN, J., AND APPLETON, R. Reducing file system latency
using a predictive approach. In Proc. USENIX Summer 1994 Technical
Conf. (Jun. 1994).

[5] HARRISON, P. G., HARRISON, S., PATEL, N. M., AND ZERTAL, S.
Storage workload modelling by hidden markov models: Application to
flash memory. Performance Evaluation 69, 1 (2012), 17–40.

[6] KIM, H., AND RAMACHANDRAN, U. Flashfire: Overcoming the
performance bottleneck of flash storage technology. Tech. rep., Georgia
Institute of Technology, 2010.

[7] LIAO, J., TRAHAY, F., GEROFI, B., AND ISHIKAWA, Y. Prefetching
on storage servers through mining access patterns on blocks. IEEE
Transactions on Parallel and Distributed Systems 27, 9 (2015), 2698–
2710.

[8] MARUF, H., AND CHOWDHURY, M. Effectively prefetching remote
memory with leap. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC) (2020).

[9] MSRC. Microsoft research cambridge. Available at http://iotta.
snia.org/traces/388.

[10] YANG, Y., LI, R., SHI, Q., LI, X., HU, G., LI, X., AND YUAN, M.
Sgdp: A stream-graph neural network based data prefetcher. Available
at https://arxiv.org/abs/2304.03864, 2023.

7

http://iotta.snia.org/traces/388
http://iotta.snia.org/traces/388
https://arxiv.org/abs/2304.03864

	Introduction
	Background
	Methodology
	Experimental Setup
	Experimental Results
	Conclusion

